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1.0 Overview 

To benchmark the incompressible flow model in ALE3D1, two test cases are 
conducted. The first case of two-dimensional flow over a flat plate is selected because it 
provides a straightforward example to determine whether or not ALE3D can grow a 
boundary layer by viscous diffusion. The benefit of the flat plate problem is that under 
certain conditions, the governing Navier-Stokes equations can be simplified and solved 
with numerical techniques, providing an independent result that can be compared with 
the solution from ALE3D. The second test case is that of two-dimensional, laminar flow 
about a circular cylinder. This test case is selected because it provides the complexity of 
an unsteady bluff-body wake in which vorticity is periodically shed from the surface of 
the cylinder. Since this canonical flow problem has been studied extensively both 
experimentally and computationally, the results from ALE3D can be compared with 
those presented in the literature. 

The results for the flat plate case demonstrate that the implicit time integration 
scheme results in an approximate twenty-four-fold reduction of the simulation time over 
that of the explicit time integration scheme. On the other hand, a problematic trend is 
observed in the explicit time integration scheme used in the flat plate case. The errors in 
both the velocity and shear stress are not reduced through grid refinement as one might 
expect. Another trend that raises concern with the flat plate problem is the sensitivity of 
the velocity and shear stress to the outlet zero natural boundary condition. In all of the 
flat plate simulations, at least one of the calculated quantities varies quite noticeably near 
the outlet of the flow domain. For the case of a circular cylinder in which an explicit 
time integration scheme is employed, both the drag coefficient and Strouhal number 
demonstrate trends of converging to a solution that compares favorably with results from 
other studies in the literature. 

2.0 Flow Over a Flat Plate 

Prandtl’ was the first to demonstrate the simplifications that can be made to the 
Navier-Stokes equations for external flow over a body at high Reynolds number, Re. 
What follows is a brief summary of Prandtl’s simplifications. Due to the no-slip 
boundary condition at the body, there exists a thin layer of fluid, called the boundary 
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layer, in which the flow rapidly transitions from zero velocity at the wall to the free 
stream velocity, Uo, at the outer edge of the boundary layer. Consequently, steep velocity 
gradients (au /dy  >> 1) exist in this layer and, hence, even small amounts of viscosity can 
result in a relatively large wall shear stress, zw = ,uau / a y  I,,*, where ,U is the fluid 
viscosity and y is the coordinate value in the normal direction away from the wall. 
Outside the boundary layer, the flow is irrotational and inertial forces dominate the flow 
field. With this physical reasoning, the steady-state, two-dimensional Navier-Stokes 
equations 

can be simplified by a scaling argument. It is assumed that u - U,, x - I ,  y - S, p - pUo2, 
where U, is the free stream velocity, I is the characteristic length of the body, S is the 
boundary layer thickness ( S / l  c< l), and p is the fluid density. Non-dimensionalizing 
the Navier-Stokes equations by these scaling factors and letting Re, = U&v >> 1 reduces 
Eqs. 1-3 to 

for steady state flow. At the outer edge of the boundary layer, Eq. 4 becomes 

Thus, the pressure gradient can be obtained from the irrotational free stream velocity, U,. 
From Eq. 5,  this same pressure gradient exists through the entire boundary layer. Eq. 4 
can be further simplified for flow over a flat plate. In this case, the free stream velocity is 
given by U(, = consf., such that ap lax  = 0. Thus, as was shown by Blasius3, Eq. 4 
reduces to 
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au au a2u 
ax ay ay2 

u - + v -  = v- 

Introducing the similarity variable, 7 = 

qv = , / G f ( q ) ,  Eqs. 6 and 7 reduce to a single third order, non-linear, ordinary 
differential equation, 

and the streamfunction, mix 

ff"+2f" I = 0 ( 9 )  

wheref(V=O) = 0, f (q=O)=O, and f (q+m) = 1. Solving Eq. 9 numerically yields the 
horizontal and vertical velocity profiles shown in Figure 2.1. The skin friction 
coefficient, C, , is given by 

Cf = 
$u ' 

= 0.664 / & 

It should be noted that neither the velocity profiles in Figure 2.1 nor C,is applicable near 
the leading edge of the plate since the assumption of Re, >> 1 is not valid for small x. 
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Figure 2.1. Horizontal and vertical velocity profiles from the numerical solution of Eq. 9. 
In these plots, u* =f(q) and v* = v(v)/,//O/x = t ( q f ' - f ) .  

2.1 Computational Setup 

Simulations of two-dimensional flow over a flat plate are performed with the 
incompressible flow model in ALE3D, which numerically solves the Navier-Stokes 
equations using a Galerlun finite element method.435 The ALE3D input files for these 
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simulations are shown in Appendix 1. To determine the sensitivity of the results to the 
grid resolution, two grids, come and medium, are chosen for this exercise (Figure 2.2). 
Table 1 describes the details of these two grids. Both an explicit and an implicit time- 
integration scheme are used in these simulations. The implicit scheme is used in this test 
case to determine its ability to decrease the simulation run time. Since the implicit 
scheme is not restricted by a numerically stable time step, it is capable of taking larger 
time steps than the explicit scheme. For the explicit simulations, the solution is advanced 
forward in time with a forward Euler time integration method. A projection method 
similar to that developed by Gresho et al. is used for the implicit  solution^.^ 

A total of four simulations are performed for the flat plate test case: two 
simulations with the explicit scheme and two simulations with the implicit scheme. For 
the explicit scheme, the two simulations involve using the coarse and medium grids with 
the horizontal and vertical velocities specified at the inlet. The inlet velocity boundary 
conditions are chosen to be the horizontal and vertical velocity profiles of a Blasius 
boundary layer for x, = 1.0, U, = 1.0, and v = 0.0005, effectively giving an inlet 
Reynolds number of 2,000. Since Re >> 1, the results of these simulations can be 
compared to the solution of the Blasius boundary layer problem. For the first simulation 
with the implicit scheme, only the horizontal velocity is specified at the inlet, while for 
the second simulation, both the horizontal and vertical velocities are specified at the inlet. 
This variation in the inlet boundary condition is done to determine the sensitivity of the 
solution to the inlet vertical velocity. When the vertical velocity component is left 
unspecified at the inlet, a zero natural boundary condition' on the tangential traction is 
used at the inlet. Only the medium grid is used for the implicit simulations. Again, the 
inlet velocity profiles are taken to be those of a Blasius boundary layer for for x, = 1.0, U, 
= 1.0, and v = 0.0005 for the implicit simulations. The following boundary conditions 
are common to both the explicit and implicit time-integration simulations. At the bottom 
wall 0, = 0), the velocity boundary condition is one of no-slip and no-penetration. A zero 
natural boundary condition is imposed at the top and outlet of the computational domain. 
The out-of-plane velocity component, w,  is set to zero for all of the nodes. No boundary 
conditions are needed for the pressure. The initial conditions at t = 0 are u(x-x,>,y>o) = 
1.0 and v(x-x,>O,y>o) = 0. Internal to the code, this initial condition then is projected to a 
divergence-free field.4 Table 2 summarizes the details of each of the four simulations. 
The CFL number is taken to be 0.5 for both grids in the explicit simulations. 

In the implicit scheme, the CFL number for the advection term is set to 3.0, while 
the stability number for the diffusion term is set to lo6. Consequently, the time step in 
the implicit scheme simulations is not diffusion limited. For the explicit simulations, the 
governing equations are solved with a conjugate gradient solver with a tolerance set to 

For the implicit simulations, a conjugate gradient solver is used to solve the 
pressure Poisson equation and a generalized minimum residual solver (gmres) is used to 
solve the momentum equations. For both of these solvers, the tolerance is set to 
Since the vertical velocity field converges more slowly than the horizontal velocity field, 
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Grid Total Number 
Number of of 
Elements Elements 

in x 
Coarse 2440 61 

Medium 9760 122 
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Figure 2.2. (a) Coarse and (b) medium grids used to simulate flow over a flat plate. The 
variable x, = 1 .O is the offset of the computational domain from origin of the x axis. 

1 
2 
3 
4 

Explicit Specified Specified 
Explicit Specified Specified 
Implicit Specified Unspecified 
Implicit Specified Specified 

Table 1. Details of the two grids used for the simulations of flow over a flat plate. The 
resolution is doubled in the x and y directions from the coarse to medium grid, such that 

the medium grid has four times as many elements as the coarse grid. 

Table 2. Details of the four flat plate simulations. 
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the simulations are run until the absolute value of the relative change in the vertical 
velocity is less than 0.01%. Each of the simulations in Runs 1-3 are done on eight 375 
MHz processors on an IBM SP machine. On the other hand, Run 4 is done on only one 
processor, making a direct timing comparison with Run 2 somewhat difficult. However, 
if the timing performance of Run 2 is simply multiplied by 8, it can be shown that the 
implicit time integration scheme runs approximately twenty-four times faster than the 
explicit time integration scheme for the case in which both the horizontal and vertical 
velocity components specified at the inlet. Post-processing and plotting of these 
simulations are done with Interactive Data Language (IDL) of Research Systems, Inc. 

2.2 Results and Discussion 

Plots of the horizontal velocity profiles and their relative differences with the 
Blasius horizontal velocity are shown in Figure 2.3. For both explicit cases (Runs 1-2), 
the maximum relative error in the horizontal velocity is approximately 1%. As the grid is 
refined from Run 1 to Run 2, the reduction in the maximum error of the horizontal 
velocity is small. This trend indicates that the solution is fairly insensitive to the grid 
resolution and that further grid refinement may not reduce the error in the horizontal 
velocity significantly below 1%. The error is somewhat smaller for the implicit 
simulations (Runs 3-4). For Run 3, the relative error is about 0.25%, while it is 
approximately 0.5% for Run 4. The profiles for the implicit cases exhibit noticeable 
dependence upon the chosen downstream location at which the profiles are taken, 
perhaps indicating sensitivity to the zero natural outlet boundary condition. Note that for 
Runs 1-2, and 4, in which both velocity components are specified at the inlet, ALE3D 
under predicts the horizontal velocity. However, for Run 3, in which only the horizontal 
velocity is specified at the inlet, ALE3D over predicts the values of the horizontal 
velocity. It can also be seen that specifying the vertical velocity in Run 4 results in a 
slightly greater error in the horizontal velocity than that in Run 3, where the inlet vertical 
velocity is unspecified. 

The vertical velocity profiles (Figure 2.4) exhibit errors that are somewhat larger 
than those for the horizontal profiles. This observation is expected because the vertical 
velocity scales as Rex-'", making it significantly smaller than the horizontal velocity and 
more sensitive to errors in the numerical solution. For all four runs, the magnitude of the 
maximum error in the vertical velocity is approximately 34%. In addition, the errors for 
both the explicit and implicit time integration schemes are dependent upon the 
downstream location at which the comparison with the Blasius profile is made. The 
magnitude of the error in the vertical velocity is consistently greatest at the farthest 
downstream location, perhaps indicating sensitivity to the outlet zero natural boundary 
condition. For the explicit simulations, the trend is for the Navier-Stokes computations to 
overshoot the correct values in the vertical velocity. On the other hand, the Navier- 
Stokes computations undershoot the correct vertical velocity for both implicit 
simulations. As is the case for the horizontal profiles, grid refinement in Runs 1 and 2 
does not result in a reduction of the vertical velocity error. Again, this trend is 
problematic since it suggests that further grid refinement may not result in further error 
reduction. 
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The shear stress coefficients and their relative errors are plotted in Figure 2.5. 
The computed values of Cffollow the general trend of Eq. 10. Though, it can be seen 
that the relative error in the shear stress coefficient has a maximum absolute value of 
approximately 24% over all four simulations. For the explicit cases, the relative error 
decreases from zero at the inlet and then exhibits oscillations near the outlet. Once again, 
the error in the shear stress coefficient does not decrease as the grid is refined in Runs 1 
and 2. For the implicit cases, the relative error in C’increases away from the inlet, 
decreases to a minimum, and then increases near the outlet. Unlike Cferrfor the explicit 
runs, Cjcrr for the implicit runs are relatively smooth and do not exhibit oscillations. 
Note, however, that there is a sudden drop in the relative error at the outlet for Run 3. 

Analysis of the pressure indicates how well the Navier-Stokes computations 
represent the irrotational flow outside the boundary layer. Recall that for Blasius flow 
over a flat plate, d p l d x  = 0. Figure 2.6 shows plots of p(x ,y  =: 0.5) for the four 
simulations. Although the pressure varies over the computational domain, it can be seen 
that the horizontal gradient in the pressure is much less than 1 for all four cases. It is 
interesting to note that for the cases in which both the horizontal and vertical velocity are 
specified at the inlet, the pressure at x-x, = 0 has a value of order lo”. On the other hand, 
for the case in which only the horizontal velocity is specified at the inlet, the pressure is 
approximately lo4 at x-x, = 0. 
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Figure 2.3. Horizontal velocity profiles at various Re, for (a) Run 1, (c) Run 2, (e) Run 3, 
and (g) Run 4. Relative difference, u*,,,Ju, = ( U * A L E J I ) - U * ) / U ~ , ,  between the computed 
horizontal velocity and the Blasius profile for (b) Run I ,  (d) Run 2, (f) Run 3, and (h) 
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Figure 2.4. Vertical velocity profiles at various Re, for (a) Run 1, (c) Run 2, (e) Run 3, 
and (g) Run 4. Relative difference, v*,,,/v, = (V*ALE~D-V*)/V,, between the computed 
horizontal velocity and the Blasius profile for (b) Run 1, (d) Run 2, (f) Run 3, and (h) 
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3.0 Flow Over a 2-D Circular Cylinder 

The problem of two-dimensional flow about a circular cylinder has been studied 
quite extensively with experimental, computational, and theoretical techniques. This 
simple geometry produces a rather complex wake, which makes it a good test case for 
code benchmarking. For a Reynolds number, Red, greater than 4 (Red = U d v ,  where U is 
the freestream velocity, d the cylinder diameter, and v the kinematic viscosity of the 
fluid), the flow about the cylinder separates off of the cylinder's aft face, resulting in two 
counter-rotating vortices in the immediate wake. When Red is increased beyond 60-100, 
these vortices alternately shed from the cylinder, giving rise to a wake consisting of 
counter-rotating vortices. 

3.1 Computational Setup 

The simulations of two-dimensional flow about a circular cylinder are conducted 
with the incompressible flow model in ALE3D.I Two cylindrical grids (Figure 3.1) are 
employed for these simulations to determine the sensitivity of the results to the grid 
resolution. The chosen diameter, d, of the cylinder is 1 and the maximum radial 
dimension of both grids is 32d. To resolve the steep velocity gradients near the cylinder 
surface and in the cylinder wake, the computational grids are graded in both the radial 
and azimuthal directions. Table 3.1 lists the details of both grids. 

The inlet boundary conditions are such that (u,v) = (1,O) for r = 32d and 
90' I B 5 270'~ where u and v are the horizontal and vertical velocity components, 
respectively. A zero natural boundary condition' is imposed at the outlet ( r  = 32d, -90" 5 
8 I -90"). Earlier simulations demonstrated that significant flow reversal can occur at 
the outlet when the flow is well resolved there. Changing either the integration to full 
Gaussian quadrature or turning hourglass correction on had no effect in eliminating the 
flow reversal at the outlet. Only coarsening of the grid at the outlet appears to reduce this 
phenomena from occurring. The mechanisms for this unusual and erroneous flow 
reversal have not been investigated at the present time. In the subsequent simulations 
which have a relatively coarse grid at the outlet, this phenomenon is not observed in the 
flow field. However, this phenomenon may still have some small influence on the 
calculated results. The out-of-plane velocity component, w, is set to 0 for all nodes and 
the surface of the cylinder has a no-slipho-penetration boundary condition (u = v = 0). 
At f = 0, the entire flow is initialized with a velocity of (u,v) = (1,O). The code then 
projects this initial condition to a divergence-free field.4 To reduce the computational 
time required for the flow to behave in a quasi-periodic manner, a random velocity 
perturbation is added to the flow about the cylinder at f = 0. Both the CFL number and 
the diffusion stability number are set to 0.3 for both grids. In the subsequent simulations, 
the time steps for both coarse and medium grids are diffusion limited. The kinematic 
viscosity of the fluid is taken to be v =  0.001, yielding a Red = 1,000. The ALE3D input 
file for these simulations is shown in Appendix 2. The governing equations are solved 
with a conjugate gradient solver with a tolerance set to 10.'. The explicit time integration 
scheme is used for both grids. The simulations are run to a point at which the measured 
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quantities, such as the lift and drag on the cylinder, are behaving in a repeatable manner 
as the vortices are shed from the cylinder. For the coarse grid, this means running the 
simulation up to t = 900 s and, for the medium grid, until t = 275 s. Post-processing of 
these simulations is done with Interactive Data Language (IDL) of Research Systems, 
Inc. 
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Figure 3.1. Coarse (a) and medium (c) grids used to simulate the flow about a 
circular cylinder. Close-up views of the (b) coarse and (d) medium grids. 
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.. .. . .  . .  . 

. . . ~  - .-~ . . . . . . .-. .- . ,- 

Grid Total Number Number k m i n  

Number of of of 
Elements Elements Elements 

Coarse 20,000 200 100 0.02169838 
Medium 80,000 400 200 0.0 10822 14 

in r in 8 

Aemin(") 

1.1638 158 
0.5764392 

Table 3.1. Details of the coarse and medium grids 

Figure 3.2. Instantaneous vorticity field about the cylinder for the medium grid. The 
white color levels indicate positive vorticity and the black color levels negative vorticity. 

3.2 Results and Discussion 

' Figure 3.2 shows an instantaneous vorticity field about the cylinder. The pattern 
of vortices with alternating senses of rotation in the wake is clearly visible in this figure. 
This periodic shedding of vorticity results in a periodic variation in both the lift and drag 
on the cylinder, with the drag varying twice as quickly as the lift. Figure 3.3 shows the 
drag coefficients (c,, = D/(+pu2d) ,  where D is the drag force on the cylinder) due to 
pressure and shear forces throughout both simulations. Note that the total drag, which is 
the sum of the pressure and shear forces, is due primarily to the pressure forces. The 
vertical dashed lines in Figure 3.3 indicate the sampling period over which average 
quantities are calculated. For both grids, this period corresponds to approximately 40 
shedding cycles. Figure 3.4 shows the variation of the drag versus time over a small 
portion of the simulation. 

Two important quantities are the average values of the drag coefficient, C d ,  and 
the lift coefficient, c1 = L / ( i p u * d ) ,  where L is the lift force on the cylinder. The 
average values of C d  and Cl are plotted in Figure 3.5 as functions of the number of 
samples, N ,  made over the sampling period. It can be seen that for both grids, the 
amplitude of variation in C d  and C! decreases with increasing N .  Theoretically, c d  and CI 
should become independent of N as N + 00. However, it can be seen that small 
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amplitude oscillations exist in the average values of C d  and C1 near the end of the 
sampling period. For the coarse grid, the final amplitude of oscillation in Cd is 
approximately 0.0005 and that of Cl approximately 0.006. For the fine grid, the final 
amplitude of oscillation in Cd is approximately 0.0005 and that of Cl approximately 
0.007. These oscillations are likely due to the fact that the sampling period is not an 
integer multiple of the shedding period of vortices in the wake of the cylinder. Further 
reduction in the amplitude of the oscillation in the average values of C d  and Cl may be 
achieved by making the sampling period an integer multiple of the shedding period or by 
increasing the time of the sampling period. 

The average values of c d  and C1 are listed in Table 3.2. Table 3.3 shows drag 
coefficients and Strouhal numbers found in the literature for two-dimensional flow about 
a circular cylinder at Red = 1,000. Comparing c d  in Tables 3.2 and 3.3 demonstrates that 
the average value of c d  from the medium grid is in fair agreement with the values of c d  

from the other more recent works on this topic. The average value of Cf should equal 
zero since, on average, the cylinder generates no net circulation. Although C, f 0 in 
these simulations, the magnitude of Cl is much less than 1. As discussed in the previous 
paragraph, running these simulations for a longer period of time or making the sampling 
period an integer multiple of the shedding period would further reduce the magnitude of 
Cf. Taking the FFT of Cf over the sampling period allows for the calculation of the 
shedding frequency,f, from which the Strouhal number, Sf = f i l l ,  can be obtained. 
Table 3.2 lists the St for both the coarse and medium grids. There is a 4.6% change in St 
in going from the coarse to the medium grid. The value of St from the medium grid 
compares favorably with those from other works (Table 3.3). 
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Figure 3.3. Drag coefficients for the (a) coarse and (b) medium grids. C,, (upper black 
line) is the drag coefficient due to pressure forces and cd, (lower gray line) is that due to 
shear forces. 
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Figure 3.4. Drag coefficients for the medium grid over a small portion of the simulation. 
c d p  (upper black line) is the drag coefficient due to pressure forces and c d s  (lower gray 
line) is that due to shear forces. 
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Figure 3.5. Variation of Cd and Cl with the number of samples, N, made during the 
sampling period for the (a-b) coarse grid and (c-d) medium grid. 
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An examination of the average flow field in the wake of the cylinder reveals the 
streamline patterns shown in Figures 3.6-3.7 for the coarse and medium grids. 
Qualitatively, the average streamlines for both grids appear very similar: the flow forms 
two separation points, one reattachment point, and three recirculation zones on the upper 
and lower halves of the cylinder. To provide a more quantitative comparison between the 
average wake structures for the coarse and medium grids, the separation angle, Bsep, and 
recirculation length, Zcirc, are measured. The separation angle is defined to be the angle at 
which the oncoming flow first detaches from the cylinder, causing the wall shear stress to 
vanish. The recirculation length is defined to be the distance between the surface of the 
cylinder and the maximum x value at which the horizontal velocity, u(x,y=O), is 
identically 0. Figure 3.8 shows a pictorial representation of e,, and I,,,. Table 3.4 
shows the S,, and lcirr for the coarse and medium grids. For the coarse grid, there is a 
distinct asymmetry in the separation angle off of the top and bottom of the cylinder. This 
may be due to an asymmetric average pressure gradient along the surface of the cylinder 
or to the possibility that the sampling period is not an integer multiple of the shedding 
period. This asymmetry in the separation angle is reduced for the medium grid. There is 
a substantial change in the separation angles (-7.6% for the top separation angle and 
-10.3% for the bottom separation angle) and the recirculation lengths (-9.3%) when 
comparing the results from the coarse and medium grids. These differences may be an 
indicator that these simulations are not yet grid converged. 

4.0 Conclusions 

These benchmarking cases demonstrate the performance of the ALE3D 
incompressible flow model for flow over a flat plate and a two-dimensional circular 
cylinder. For the flat plate simulation, it is estimated that the implicit time integration 
scheme results in a twenty-four-fold reduction of the simulation time over that of the 
explicit time integration scheme. The smallest error in the horizontal velocity occurs for 
the case in which the implicit time integration scheme is used and the vertical velocity is 
not specified at the inlet. The errors in the vertical velocity are comparable for all four 
test cases. For the two explicit time integration cases with the flat plate, a problematic 
trend is observed. Since the errors in the velocity and shear stress are not significantly 
reduced through grid refinement, it may not be possible to further reduce the errors. 
Another problematic trend with the flat plate problem is the sensitivity of the velocity and 
shear stress to the outlet zero natural boundary condition. For the benchmarlung case of a 
circular cylinder in which an explicit time integration scheme is employed, the drag 
coefficient and Strouhal number demonstrate convergence to a solution that compares 
favorably with results from other studies in the literature. Lastly, as these results are only 
for two specific flow problems, care must be taken when trying to draw conclusions for 
how well the incompressible flow model in ALE3D simulates other types of flows 
geometries at different Re. 
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c d  Cl st 
Coarse 

Medium 
1.4422 0.002 1 0.2279 
1 SO22 0.0067 0.2394 

Table 3.2. Measurements of the average drag coefficient, Cd,  average lift coefficient, C1, 
and Strouhal number, St, from the ALE3D simulations. 

St Reference 

Table 3.3. Drag coefficient, Cd, and Strouhal number, St,  measurements for Red = 1,000 
from other studies of flow about a circular cylinder. 
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Figure 3.6. Streamlines of the average velocity field about the circular cylinder for the 
(a) coarse and (b) medium grids. 
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Figure 3.7. Close-up view of the streamlines for the (a) coarse and (b) medium grids. 
The x's in (a) indicate the approximate centers of the recirculation zones. 

Table 3.4. Separation angles and recirculation length measurements for the coarse and 
medium grids. 
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Figure 3.8. Separation angle and recirculation length definitions. 
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Appendix 1 ALE3D Input Files for the Flat Plate 

Run 1: Coarse Grid, Explicit Time Step, Uinlet and Vinlet Specified 

# flat plate 
DECOMP 
partitions 1 
END 

CONTROL 
stopcycle 1- 
dtmax I .  
dtinit 1.e-7 
dtmin Le-10 

END 

OUTPUT 
plotac 0 
dumpcycle 5000 le9 
plotcycle SO00 le9 
numcycdigits 6 
notify 1 

plotvar deleteall 
plotvar add p ul u2 u3 

# tracer-fixed u-watch .95 .01 0. 
# tracer-fixed u-watch0 -1.0.1 0. 
# tracer-fixed u-watch2 3.7 .2 0. 

t# timehist u 1 tracer u-watch 
# timehist u 1 tracer u-watch0 
# timehist u I tracer u-watch2 
Mimehist inc-rke scalar 

END 

BOUNDARY 
table const-table 0.0 I .O 

table inlet-profile 
include ulin.txt 

spacetable inst-ul 1 .O y 0.0 table inlet-profile 

table inlet-profile_u2 
include u2in.txt 
spacetable inst-u2 I .O y 0.0 table inlet-profile-u2 

ndesel fluid material 1 
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incvelocity fluid I .O 0.0 0.0 

incvel-loadcurve inletul spacetable inst-ul 1.0 1.0 0.0 0.0 I table 
coost-table 

incvel-loadme inletu2 spacetable inst-& 1 .O 0.0 1 .O 0.0 1 table 
const-table 

incvel-loadcurve zl 0.0 0.0 0.0 1 .O 1 table const-table 
incvel-loadcurve 22 0.0 0.0 0.0 I .O 1 table const-table 
incvel-loadcurve wall 1.0 0.0 0.0 0.0 0 table const-table 

END 

HYDRO 
nohydro 1 

END 

[NCFLOW 
inclogiterations 1 
incstabflag 0 
incstabcoef 0.01 
inccflO.5 
inccflv 0.5 
inclumpmass I 
incquadrature I 
ibtd 1 
ihg I 
increusesle I 

# solverparams string “minResProjection 1 0  
+# solverparams string “AConjugateProjection 10” 
solverparams 

solverlib hypre 
solver cg 
precond parasails 
parasailssymmetric I 
parasai lsfi Iter 0.05 
parasailsthreshold I .e-2 
parasailsnlevels 1 
precond-reuse IOOOOOO 
schurreduction I 
to1 Le-I2 
maxiter loo00 
outputlevel 0 
debugoutput 0 

END 

MATERIAL a I 

END 
incinput rho I .  p0 0.0 mu 0.0005 itrb 0 

Run 2: Medium Grid, Explicit Time Step, Uinlet and Vinlet Specified 

#I flat plate 
DECOMI’ 
partitions 8 

END 
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1 

CONTROL 
stopcycle 1- 
dtmax 1. 
dtinit 1 .e-7 
dtmin 1.e-10 
END 

OUTPUT 
plotac 0 
dumpcycle 5000 le9 
plotcycle 5000 le9 
numcycdigits 6 
notify 1 

plotvar deleteall 
plotvar add p u I u2 u3 

# tracer-fixed u-watch .95 .01 0. 
# tracer-fixed u-watch0 -1. 0. I 0. 
# tracer-fixed u-watch2 3.7 .2 0. 

# timehist ul  tracer u-watch 
# timehist ul tracer u-watch0 
# timehist ul tracer u-watch2 
Mimehist inc-rke scalar 

END 

BOUNDARY 
table const-table 0.0 I .O 

table inlet-profile 
include ulin.txt 

spacetable inst-ul 1.0 y 0.0 table inlet-profile 

table inlet-profile-u2 
include u2in.txt 
spacetable inst-u2 1 .O y 0.0 table inlet-profile-u2 

nodeset fluid material I 

incvelocity fluid I .O 0.0 0.0 

incvel-loadcurve inletul spacetable inst-u I I .O I .O 0.0 0.0 I table 
const-table 

incvel-loadcurve inletu2 spacetable inst-u2 I .O 0.0 I .O 0.0 1 table 
const-table 

incvel-loadcurve zl  0.0 0.0 0.0 I .O I table const-table 
incvel-loadcurve 22 0.0 0.0 0.0 I .O I table const-table 
incvel-loadcurve wall I .O 0.0 0.0 0.0 0 table const-table 

END 

HYDRO 
nohydro I 
END 

INCFLOW 
inclogiterations 1 
incstabflag 0 
incstabcoef 0 0 I 
inccfl0 5 
inccflv 0 5 
inclumpmass 1 
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inquadrature 1 
ibtd 1 
ihg 1 
increusesle I 

# solverparams string “minResProjection 10” 
# solverparams string “AConjugateRojectim I O  
solverparams 

solverlib hypre 
solver cg 
precond parasails 
parasailssymmetric 1 
parasailsfilter 0.05 
parasailsthreshold 1 .e-2 
parasailsnlevels I 
precond-reuse IOOOOOO 
schurreduction I 
to1 1 .e-I 2 
maxiter 10000 
outputlevel 0 
debugoutput 0 

END 

MATERIAL a 1 

END 
incinput rho 1. p0 0.0 mu O.OOO5 itrb 0 

Run 3: Medium Grid, Implicit Time Step, Uinlet Specified, Vinlet Unspecified 

# flat plate 
DECOMP 
partitions 8 
END 

CONTROL 
stopcycle IOOOOOOOO 
dtmax 1. 
dtinit 1.e-7 
dtmin Le-10 

END 

OUTPUT 
plotac 0 I I O  20 25 50 LOO 
dumpac 10 20 25 50 
dumpcycle 100 le9 
plotcycle 100 le9 
finaldump I 
tinalplot 0 
numcycdigits 10 
notify I 

plotvar deleteall 
plotvar add p u I u2 u3 

tracer-fixed u-watch0 0.01 0.01 0.0 
tracer-fixed u-watch1 1.0 0.01 0.0 
tracer-fixed u-watch2 4.0 0.01 0.0 

timehist ul tracer u-watch0 
timehist u I tracer u-watch I 
timehist u I tracer u-watch2 
timehist inc-rke scalar 
tirnehist inc-divergence scalar 
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END 

BOUNDARY 
table const-table 0.0 1 .O 

table inlet-profile 
include ulin.txt 

spacetable inst-ul I .O y 0.0 table inletjrofile 

nodeset fluid material 1 

incvelocity fluid 1 .O 0.0 0.0 

incvel-loadcurve inletul spacetable inst-ul 1.0 1.0 0.0 0.0 I table const-table 

incvel-loadcurve zl 0.0 0.0 0.0 I .O I table const-table 
incvel-loadcurve 22 0.0 0.0 0.0 1 .O I table const-table 
incvel-loadcurve wall I .O 0.0 0.0 0.0 0 table const-table 

END 

HYDRO 
nohydro 1 

END 

INcmow 
# parameters needed for 2D implicit runs 
incmethod implicit 
inctime 1 

# for 2d problems 
inc2d 1 

# thetak and thetan (if both I .  then fully implicit) 
# note: if fuully implicit, solve velocity with gmes (nonsym) 
# if semi implicit, OK to use cg for velocity (sym) 
ifthetak 1.0 
ifthetan 1.0 

# The diffusion courant limit is set to a big number 
inccfl3. 
inccflv 1.Oe6 
inclumpmass 0 

# btd is turned off but may be needed for some cases 
ibtd 0 
ebtd 0.375 
incresetppeguess 0 

# This makes sure you don’t use the u-guess for v etc. 
# but instead use the previous values 
incresetvelguess 1 

inclogiterations I 
incstabflag 0 
incstabcoef 0.01 

# We want quadrature to be 8 for implicit 
incquadrature 8 

incdivcalc 1 
irke I 
incdivfree I 

# Solver params needed for implicit solve 
solverparams ppe string ”minResProjection IO” 
solverparams ppe 

solverlib hypre 
schurreduction I 
solver cg 
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precond parasails 
parasailssymmetric 1 
parasailsfilter 0.05 
parasailsthreshold 1 .e-2 
parasailsnlevels 1 
precond-reuse 1OOOOOO 
to1 1.e-12 
maxiter I oo00 
outputlevel 0 
debugoutput 0 

solverparams vel 
solverlib hypre 
solver gmres 
precond diag 
gmresdim loo0 
maxiter 5000 
to1 I .e- 12 
outputlevel 0 

END 

MATERIAL a I 

END 
incinput rho 1. PO 0.0 mu O.OOO5 itrb 0 

Run 4: Medium Grid, Implicit Time Step, IlinIet and Vinlet Specified 

# flat plate 
DECOMP 

# partitions 8 
END 

CONTROL 
stopcycle 1- 
dtmax I 
dtinit 1 .e-7 
dtmin Le-IO 

END 

OUTPUT 
plotac 0 I 2 3 4 5  10 20 25 50 100 
dumpac 10 20 25 50 
dumpcycle 100 le9 
plotcycle 100 le9 
finaldump I 
finalplot 0 
numcycdigis IO 
notify I 

plotvar deleteall 
plotvar add p ul u2 u3 

tracer-fixed u-watch0 0.01 0.01 0.0 
tracer-fixed u-watch1 1.0 0.01 0.0 
tracer-fixed u-watch2 4.0 0.01 0.0 

timehist u I tracer u-watch0 
timehist u l  tracer u-watch1 
timehist u 1 tracer u-watch2 
limehist u2 tracer u-watch0 
timehist u2 tracer u-watch1 
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timehist u2 tracer u-watch2 
timehist inc-rke scalar 
timehist inc-divergence scalar 

END 

BOUNDARY 
table const-table 0.0 1.0 

table inlet-profile 
include ulin.txt 
spacetable inst-ul 1 .O y 0.0 table inlet-profile 

table inlet-profile-u2 
include u2in.txt 
spacetable inst-u2 1 .O y 0.0 table inlet-profile-u2 

nodeset fluid material I 

incvelocity fluid spacetable inst-ul 1.0 0.0 0.0 

incvel-loadcurve inletu I spacetable inst-ul I .O I .O 0.0 0.0 1 table 
const-table 

incvel-loadcurve inletu2 spacetable inst-u2 1 .O 0.0 1.0 0.0 I table 
const-table 

incvel-loadcurve zl 0.0 0 0 0 0 1 0 I table const-table 
incvel-loadcurve 22 0 0 0 0 0 0 1 0 I table const-table 
incvel-loadcurve wall 1 0 0 0 0 0 0 0 0 table const-table 

END 

HYDRO 
nohydro I 

END 

INCE%OW 
# parameters needed for 2D implicit runs 
incmethod implicit 
inctime I 

# for 2d problems 
inc2d 1 

# thelak and thetan (if both 1, then fully implicit) 
# note: if fully implicit, solve velocity with gmres (nonsym) 
# if semi implicit, OK to use cg for velocity (sym) 
ifthetak 1.0 
ifthetan 1.0 

#The diffusion courant limit is set to a big number 
inccfl3. 
inccflv I.& 
inclumpmass 0 

# btd is turned off but may be needed for some cases 
ibtd 0 
ebtd 0.375 
incresetppeguess 0 

#This makes sure you don't use the u-guess for v etc 
#but instead use the previous values 
incresetvelguess 1 

inclogiterations I 
incstabflag 0 
incstabcoef 0.01 

# We want quadrature to be 8 for implicit 
incquadrature 8 

incdivcalc I 
irke I 
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incdivfree I 

# Solver params needed for implicit solve 
solverparams ppe string "minResProjection 10" 
solverparams ppe 

solverlib hypre 
schurreduction 1 
solver cg 
precond parasails 
parasailssymmetric I 
parasailsfilter 0.05 
parasailsthreshold 1.e-2 
parasailsnlevels 1 
precond-reuse 1000000 
to1 Le-12 
maxiter I oo00 
outputlevel 0 
debugoutput 0 

solverparams vel 
solverlib hypre 
solver gmres 
precond diag 
gmresdim 1000 
maxiter 5000 
to1 1.e-12 
outputlevel 0 

END 

MATERIALa I 

END 
incinput rho I .  p0 0.0 mu 0.0005 itrb 0 

Appendix 2 ALE3D Input File for the Circular Cylinder 

Coarse and Medium Grids 

# circle 

DECOMP 
partitions 16 
END 

CONTROL 
stopcycle IOOOOOO 
#stoptime 10.0 
dtmax I .  
dtinit Le-5 
dtmin Le-I0 
END 

OUTPUT 
plotac 0 
#plottime 0. I I .e9 
Minaldump I 
#tinalplot 0 
dumpcycle 5000 le9 
plotcycle 2000 le9 

numcycdigits 6 
notify 10 
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outputlevel 0 
debugoutput 0 

END 

MATERIAL fluid 1 
incinput rho 1.0 p0 0.0 mu 0.001 
END 
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